In [1]:
from agpy import imf
figsize(12,8)
In [2]:
# From a Schecter mass function with some cutoff, generate a collection of clusters
# Then, determine whether "most" massive stars are in massive clusters or if they're evenly distributed with mass
mrange = logspace(1,5,1000) # from 10 msun to million msun clusters
schec = imf.modified_schechter(mrange,m0=1e4,m1=100) # cutoff at low mass
figure()
loglog(mrange,schec,label="Modified Schecter $m_1=10^2$, $m_0=10^4$")
loglog(mrange,imf.schechter(mrange,m0=1e5),label="Schecter $m_0=10^5$")
loglog(mrange,imf.schechter(mrange,m0=1e4),label="Schecter $m_0=10^4$")
xlabel("Cluster Mass")
ylabel("Fractional Number of Clusters")
legend(loc='best')
Out [2]:
In [3]:
nclusters = 50000
clusters = []
obcount = []
ocount = []
mclusters = []
for rn in np.random.rand(nclusters):
mcluster = imf.inverse_imf(rn, massfunc=imf.modified_schechter, mmax=1e7, mmin=10, m1=100, m0=1e5)
cluster = imf.make_cluster(mcluster, silent=True)
obcount.append((cluster>8).sum())
ocount.append((cluster>20).sum())
mclusters.append(mcluster)
clusters.append(cluster)
In [4]:
close(1)
figure(1,figsize=(18,10)); clf()
plot(sort(mclusters),np.cumsum(np.array(obcount)[argsort(mclusters)])/1./np.sum(obcount),'.',label="$M_0=10^5$ OB Mod Schec")
plot(sort(mclusters),np.cumsum(np.array(ocount)[argsort(mclusters)])/1./np.sum(ocount),'.',label="$M_0=10^5$ O Mod Schec")
semilogx(sort(mclusters),np.array(mclusters)*0+0.5,'r--')
xlabel("Cluster Mass $M_i$")
ylabel("Fraction of Clusters with $M<M_i$")
Out [4]:
In [5]:
imf.inverse_imf(0.99, massfunc=imf.modified_schechter, m1=100, m0=1e5, mmin=10, mmax=1e7)
Out [5]:
In [6]:
max(mclusters)
Out [6]:
In [7]:
np.cumsum(obcount)
Out [7]:
In [8]:
argsort(mclusters)
Out [8]:
In [9]:
nclusters = 50000
Sclusters = []
Sobcount = []
Socount = []
Smclusters = []
for rn in np.random.rand(nclusters):
mcluster = imf.inverse_imf(rn, massfunc='schechter', mmax=1e7, mmin=10, m0=1e5)
cluster = imf.make_cluster(mcluster, silent=True)
Sobcount.append((cluster>8).sum())
Socount.append((cluster>20).sum())
Smclusters.append(mcluster)
Sclusters.append(cluster)
In [10]:
fig = figure(1)
plot(sort(Smclusters),np.cumsum(np.array(Sobcount)[argsort(Smclusters)])/1./np.sum(Sobcount),'.',label="$M_0=10^5$ OB Schechter")
plot(sort(Smclusters),np.cumsum(np.array(Socount)[argsort(Smclusters)])/1./np.sum(Socount),'.',label="$M_0=10^5$ O Schechter")
legend(loc='best')
Out [10]:
In [11]:
nclusters = 50000
S4clusters = []
S4obcount = []
S4ocount = []
S4mclusters = []
for rn in np.random.rand(nclusters):
mcluster = imf.inverse_imf(rn, massfunc='schechter', mmax=1e6, mmin=10, m0=1e4)
cluster = imf.make_cluster(mcluster, silent=True)
S4obcount.append((cluster>8).sum())
S4ocount.append((cluster>20).sum())
S4mclusters.append(mcluster)
S4clusters.append(cluster)
In [12]:
fig = figure(1)
plot(sort(S4mclusters),np.cumsum(np.array(S4obcount)[argsort(S4mclusters)])/1./np.sum(S4obcount),'.',label="$M_0=10^4$ OB Schechter")
plot(sort(S4mclusters),np.cumsum(np.array(S4ocount)[argsort(S4mclusters)])/1./np.sum(S4ocount),'.',label="$M_0=10^4$ O Schechter")
legend(loc='best')
Out [12]:
In [13]:
sum(S4mclusters)
Out [13]:
In [14]:
# this scenario is where the smallest cluster is a single star, so the exponential turnover is at 1 msun, and the minimum cluster mass is 0.1 msun
# need to go to larger numbers for this one, of course
nclusters = 100000
allclusters = []
allobcount = []
allocount = []
allmclusters = []
for rn in np.random.rand(nclusters):
mcluster = imf.inverse_imf(rn, massfunc=imf.modified_schechter, mmax=1e8, mmin=0.1, m0=1e4, m1=1)
cluster = imf.make_cluster(mcluster, silent=True)
allobcount.append((cluster>8).sum())
allocount.append((cluster>20).sum())
allmclusters.append(mcluster)
allclusters.append(cluster)
In [15]:
fig = figure(1)
plot(sort(allmclusters),np.cumsum(np.array(allobcount)[argsort(allmclusters)])/1./np.sum(allobcount),'.',label="$M_0=10^4 M_1=1$ OB Mod Schechter")
plot(sort(allmclusters),np.cumsum(np.array(allocount)[argsort(allmclusters)])/1./np.sum(allocount),'.',label="$M_0=10^4 M_1=1$ O Mod Schechter")
legend(loc='best')
Out [15]:
In [16]:
A = argmin(abs(0.5-np.cumsum(np.array(allobcount)[argsort(allmclusters)])/1./np.sum(allobcount)))
sort(allmclusters)[A]
A = argmin(abs(0.5-np.cumsum(np.array(allocount)[argsort(allmclusters)])/1./np.sum(allocount)))
sort(allmclusters)[A]
Out [16]:
In [21]:
%pastebin 0-16 raw=False
Out [21]: